Abstract

Nanoparticles of a calcium–iron complex oxide were prepared by pulsed laser ablation on silicon wafer substrates placed at off-axial positions against a target. An ArF excimer laser was used to irradiate a CaFe 2O 4 target in atmospheres of Ar and O 2 at room temperature. The effects of ambient pressure and laser pulse energy on size and composition of nanoparticles were investigated using atomic force microscopy and X-ray photoelectron spectroscopy. The nanoparticles obtained were almost spherical and 2 to 26 nm in diameter. The size distributions of the nanoparticles were very narrow and agreed with the log-normal distribution function. The nanoparticle size increased with ambient pressure and pulse energy. The Ca/Fe atomic ratios in the nanoparticles, however, decreased with increasing ambient pressure and were independent of pulse energy. By this technique, the size and composition of nanoparticles can be easily controlled by laser fluence and pressure during the laser ablation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.