Abstract
In this study, new organic-inorganic g-C3N4/CoAl-LDH nanocomposites were prepared and introduced to fabricate photocatalytic cement mortars by internal mixing, coating, and spraying. The photocatalytic depollution of both g-C3N4/CoAl-LDH and cement mortars was assessed by NOx degradation reaction under UV-visible light irradiation. The study results suggested that the degradation efficiency of g-C3N4/CoAl-LDH nanocomposites improved with an increase in g-C3N4 content. The g-C3N4/CoAl-LDH1.5 nanocomposite displayed the highest NOx degradation capacity, which was about 1.23 and 3.21 times that of pure g-C3N4 and CoAl-LDH, respectively. The photocatalytic cement mortars which were all fabricated using different approaches could effectively degrade the target pollutants and exhibited significant compatibility between g-C3N4/CoAl-LDH and cementitious substrate. Among them, the coated mortars showed strong resistance to laboratory-simulated wearing and abrasion with a small decrease in degradation rate.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.