Abstract

In this study, crumpled graphene oxide balls (CGBs) were prepared via capillary compression using a rapidly evaporating aerosol droplet method. The CGBs were observed using scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), and Raman spectroscopy. The size distributions of crumpled particles were obtained using a laser nanometer particle size analyzer (DLS). The dispersibility of the water and the ionic liquid (IL) was tested by ultrasonic dispersion. The tribological properties of water or ionic liquids containing crumpled graphene oxide ball additives (W/IL-CGB) were tested by a reciprocating friction tester and compared with water/ionic liquids with graphene oxide. The morphology of the wear scar was observed by a three-dimensional optical microscope and its lubrication mechanism was analyzed. The results show that the CGBs were successfully prepared by rapid evaporation of aerosol droplets, and the obtained CGBs were crumpled paper spheres. The CGBs had good water dispersion and ionic liquid dispersion, and IL-CGB has excellent anti-friction and anti-wear effects on steel-steel friction pairs. During the friction process, the CGB was adsorbed at the interface of the steel-steel friction pair to form a protective layer, which avoids the direct contact of the friction pair, thereby reducing friction and wear.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.