Abstract

Cancer is the leading cause of mortality worldwide, and lung cancer is the most malignant. However, the high failure rate in oncology drug development from in vitro studies to in vivo preclinical models indicates that the modern methods of evaluating drug efficacies in vitro are not reliable. Traditional 2D cell culture has proved inadequate to mimic real physiological conditions. Current 3D cell culture methods do not represent the delicate structure of lung alveoli. To mimic lung alveoli structure, a cell-containing enzyme-crosslinked gelatin microbubble scaffold was produced by mixing surfactant-containing gelatin solution with microbial transglutaminase (mTGase)-mixed A549 cell suspension in a four-channel flow-focusing microfluidic device. With uniform pore size of about 100 μm in diameter, this gelatin microbubble scaffold resembled the lung alveoli in structure and in mechanical properties with good biocompatibility. Effective gemcitabine concentration required to induce cell death in microbubble scaffolds was significantly higher than in 2D culture together with a longer treatment time. Cell death mechanisms were confirmed to be gemcitabine-induced cell apoptosis through Western blotting and real-time polymerase chain reaction. H&E staining and TUNEL assay showed rounded cells with DNA damage in drug-treated scaffolds. Taken together, the cell-containing microbubble scaffolds successfully mimicked lung alveoli in structure and cellular responses after gemcitabine treatment were similar to clinical regimen of treating lung carcinoma. The microbubble scaffold is promising to facilitate anticancer drug discovery by providing more accurate preclinical predictions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.