Abstract

In this work, the optimum conditions for the preparation of barium stannate titanate (Ba(Sn0.05Ti0.95)O3 ; BST5) ceramics by solid state reaction method were investigated. The samples were heated at calcination temperatures from 600 to 1200 oC for 4 h and sintering temperatures from 1250 to 1400 oC for 2 h. Thermogravimetric analysis (TGA) and differential thermal analysis (DTA) were used to evaluate the optimum conditions for calcination. The phase formation was carried out by X-ray diffractometer (XRD). The microstructure was studied by using a scanning electron microscope (SEM). It was found that, a high purity of perovskite powders were obtained with a calcinations temperature at 1200 oC. The percent of the perovskite phase and lattice parameter a were increased by increasing the calcination temperatures. The average particle size was increased from 0.6 to 1.0 µm when increasing the calcination temperatures from 600 to 1200 oC. A pure cubic perovskite phase was found in all the sintered samples. The average grain size is in the range of 1.2 to 43.3 µm when increasing of sintering temperatures from 1250 to 1400 oC. The maximum of density and dielectric constant was observed in a 1400 oC sintered pellet.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call