Abstract

Every year, roughly two million patients worldwide sustain a bone grafting procedure to repair bone defects stemming from tumor, the wound, the infection, as well as other reasons [1, 2]. The bone transplantation is one of main methods to treat bone damages [3]. The gold standard is to use autologous bone or autograft [4]. However, both the need of the second surgery and morbidity at the extraction site [5-7] has been an incentive to search for alternative treatment. One of them is to form bone graft bone. Many materials have been widely chosen to form bone graft substitutes: metals, polymers, ceramics, dehydrate, and calcium phosphates [8-13]. Although these synthetic materials provide an immediate solution for many patients, their long-term performance is generally not satisfactory. This is often due to a mechanical property mismatch between the implant failure and tissue damage [14, 15]. The development of combined artificial bone with improved mechanical properties and enhanced biocompatibility calls for a biomimetic approach using natural bone as a guide.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.