Abstract

Our objective is to evaluate an ultrasound probe for measurements of velocity and anisotropy in human cortical bone (tibia). The anisotropy of cortical bone is a known and mechanically relevant property in the context of osteoporotic fracture risk. Current in vivo quantitative ultrasound devices measuring the velocity of ultrasound in long bones can only be applied in the axial direction. For anisotropy measurements a second direction for velocity measurements preferably perpendicular to the axial direction is necessary. We developed a new ultrasound probe which permits axial transmission measurements with a simultaneous second perpendicular direction (tangential). Anisotropy measurements were performed on isotropic and anisotropic phantoms and two excised human female tibiae (age 63 and 82). Anisotropy ratios (AI; ratio of squared ultrasound velocities in the two directions) were for the isotropic phantom 1.06±0.01 and for the anisotropic phantom 1.14±0.03 (mean±standard deviation). AI was 1.83±0.29 in the tibia from the older donor and 1.37±0.18 in the tibia from the younger donor. The AIs were in the expected range and differed significantly (p<0.05, t-test) between the tibiae. Measured sound velocities were reproducible (mean standard deviation of short time precision of both channels for phantom measurements 31m/s) and in agreement with reported velocities of the phantom material. Our results document the feasibility of anisotropy measurements at long bones using a single probe. Further improvements in the design of the probe and tests in vivo are warranted. If this approach can be evaluated in vivo an additional tool for assessing the bone status is available for clinical use.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.