Abstract
Context-aware recommendation systems attempt to address the challenge of identifying products or items that have the greatest chance of meeting user requirements by adapting to current contextual information. Many such systems have been developed in domains such as movies, books, and music, and emotion is a contextual parameter that has already been used in those fields. This paper focuses on the use of emotion as a contextual parameter in a tourist destination recommendation system. We developed a new corpus that incorporates the emotion parameter by employing semantic analysis techniques for destination recommendation. We review the effectiveness of incorporating emotion in a recommendation process using prefiltering techniques and show that the use of emotion as a contextual parameter for location recommendation in conjunction with collaborative filtering increases user satisfaction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Applied Computational Intelligence and Soft Computing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.