Abstract
The solvatochromic characteristics of methyl red were examined in several aqueous solutions from pure water, with methanol, ethanol, propanol, acetonitrile, and dioxane. In order to explain the preferred solvation of the probe azo dye in the binary mixed solvents, the solvent exchange model of Bosch and Roses was used to evaluate the association between the empirical solvent polarity scale (ET) values of MR and solvent composition. Non-linear solvatochromism of methyl red was noted in all aqueous mixtures containing methanol, ethanol, propanol, acetonitrile, and dioxane. In addition to calculating the local mole fraction of each solvent composition in the cybotactic area of the probe, the impact of the solvating shell composition on the preferential solvation of the solute dye was examined in terms of both solvent-solvent and solute-solvent interactions. The local mole fraction of each solvent composition in the cybotactic region of the probe was also calculated. The results indicated that the MR solvation shell was thoroughly saturated with the solvent complex S12 in the following order: dioxane > ethanol > methanol > acetonitrile > propanol. Data from the binary systems were analyzed with KAT parameters using a multi-model; in aqueous methanol and ethanol solutions, the hydrogen acidity was more responsible for the spectral shift, whereas in aqueous acetonitrile and dioxane solutions, the basicity has a greater influence.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.