Abstract

ObjectiveWe created a finite element model to predict the probability of dissection based on imaging-derived aortic stiffness and investigated the link between stiffness and wall tensile stress using our model. MethodsTransthoracic echocardiogram measurements were used to calculate aortic diameter change over the cardiac cycle. Aortic stiffness index was subsequently calculated based on diameter change and blood pressure. A series of logistic models were developed to predict the binary outcome of aortic dissection using 1 or more series of predictor parameters such as aortic stiffness index or patient characteristics. Finite element analysis was performed on a subset of diameter-matched patients exhibiting patient-specific material properties. ResultsTransthoracic echocardiogram scans of patients with type A aortic dissection (n = 22) exhibited elevated baseline aortic stiffness index when compared with aneurysmal patients’ scans with tricuspid aortic valve (n = 83, P < .001) and bicuspid aortic valve (n = 80, P < .001). Aortic stiffness index proved an excellent discriminator for a future dissection event (area under the curve, 0.9337, odds ratio, 2.896). From the parametric finite element study, we found a correlation between peak longitudinal wall tensile stress and stiffness index (ρ = .6268, P < .001, n = 28 pooled). ConclusionsNoninvasive transthoracic echocardiogram–derived aortic stiffness measurements may serve as an impactful metric toward predicting aortic dissection or quantifying dissection risk. A correlation between longitudinal stress and stiffness establishes an evidence-based link between a noninvasive stiffness parameter and stress state of the aorta with clinically apparent dissection events.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call