Abstract
To set up a schedule of toll collector in advance and reduce the queue length and traffic congestion of toll stations, this paper proposes a short-term forecasting method for toll stations based on long short-term memory network. First, we analyze the quality of highway toll data. Then, a data preprocessing method based on the cubical smoothing algorithm with five-point approximation is designed. Moreover, we establish the traffic data set which is associated with the toll stations information and time. Then we construct a traffic flow prediction model. Taking the Airport Station of Airport Highway in Guangzhou as an example, then test the validity and real-time performance of our model. The results show that the mean absolute percentage error of the prediction is about 3.6% when the forecast horizon of prediction is 5 minutes; when the forecast horizon of prediction is 10 minutes, the mean absolute percentage error is about 6.07%; when the forecast horizon of prediction is 15 minutes, the mean absolute percentage error is about 8.68%, therefore, the model can accurately predict the traffic flow of toll stations. At the same time, compared with the KNN algorithm and GBDT algorithm, the model of this paper not only has higher prediction accuracy, but also has better adaptability to predict the peak, and when weather is adverse, the algorithm of this paper also can predict accurately through extracting the relevance of time in data set effectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IOP Conference Series: Earth and Environmental Science
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.