Abstract

Several analytical methods for the prediction of total heave of desiccated, expansive soils have been proposed for various geographic regions. The proposed method herein is based on a general theory for unsaturated soil. The in situ stress conditions, as assessed from the corrected swelling pressure and the required soil moduli, are deduced from the constant volume oedometer test.Verification of the proposed method was accomplished using data accumulated from the monitoring of movements of a floor slab in a light industrial building in north-central Regina, Saskatchewan. A leak in a water line buried under the floor slab resulted in a maximum heave of about 106 mm. Of the three final pore-water pressure distributions assumed, the one where pressure is constant with depth and equal to atmospheric pressure appears to be representative of the field conditions corresponding to the maximum measured heave. The measured heave represents 89% of the predicted heave for the zero pore-water pressure distribution. It is concluded that the proposed method of analysis, based upon a general theory for unsaturated soils, provides a practical method to accurately assess total heave.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.