Abstract

SUMMARY Due to the strong heterogeneity of the reservoir, it is difficult to extend the classical reservoir parameter prediction model to the new work area. Traditional geological methods rely on experience, while machine learning algorithms lack consideration of reservoir heterogeneity. This makes it impossible for these methods to achieve good predictive performance in new work areas. In this paper, we discuss designing a multilayer deep transfer learning network (MDTL). The network enables accurate prediction of reservoir parameters in new areas based on core and logging data from mature areas. For the architectural design, we establish a network structure that realizes data interaction in different work areas. For network parameter optimization, we design a multilayer maximum mean discrepancy loss function. It guides network training to learn feature knowledge about data in different work areas. For logging data processing, we explore a support vector machine method to remove abnormal noise in logging data. We apply MDTL to predict shale gas porosity and total organic carbon content in southern Sichuan. Compared to state-of-the-art reservoir parameter prediction models, MDTL achieves the best performance in new well areas. The network integrates the idea of multilayer transfer learning, reduces the influence of reservoir heterogeneity and effectively ensures the prediction accuracy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.