Abstract

To overcome limitations inherent in existing mechanical performance prediction models for pervious concrete, including material constraints, limited applicability, and inadequate accuracy, this study employs a deep learning approach to construct a Convolutional Neural Network (CNN) model with three convolutional modules. The primary objective of the model is to precisely predict the 28-day compressive strength of pervious concrete. Eight input variables, encompassing coarse and fine aggregate content, water content, admixture content, cement content, fly ash content, and silica fume content, were selected for the model. The dataset utilized for both model training and testing consists of 111 sample sets. To ensure the model’s coverage within the practical range of pervious concrete strength and to enhance its robustness in real-world applications, an additional 12 sets of experimental data were incorporated for training and testing. The research findings indicate that, in comparison to the conventional machine learning method of Backpropagation (BP) neural networks, the developed CNN prediction model in this paper demonstrates a higher coefficient of determination, reaching 0.938, on the test dataset. The mean absolute percentage error is 9.13%, signifying that the proposed prediction model exhibits notable accuracy and universality in predicting the 28-day compressive strength of pervious concrete, regardless of the materials used in its preparation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.