Abstract

The prediction of molecules toxicity properties plays an crucial role in the realm of the drug discovery, since it can swiftly screen out the expected drug moleculars. The conventional method for predicting toxicity is to use some in vivo or in vitro biological experiments in the laboratory, which can easily pose a threat significant time and financial waste and even ethical issues. Therefore, using computational approaches to predict molecular toxicity has become a common strategy in modern drug discovery. In this article, we propose a novel model named MTBG, which primarily makes use of both SMILES (Simplified molecular input line entry system) strings and graph structures of molecules to extract drug molecular feature in the field of drug molecular toxicity prediction. To verify the performance of the MTBG model, we opt the Tox21 dataset and several widely used baseline models. Experimental results demonstrate that our model can perform better than these baseline models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.