Abstract

BackgroundSurgery is usually the treatment of choice for patients with cervical compressive myelopathy (CCM). Motor evoked potential (MEP) has proved to be helpful tool in evaluating intraoperative cervical spinal cord function change of those patients. This study aims to describe and evaluate different MEP baseline phenotypes for predicting MEP changes during CCM surgery.MethodsA total of 105 consecutive CCM patients underwent posterior cervical spine decompression were prospectively collected between December 2012 and November 2016. All intraoperative MEP baselines recorded before spinal cord decompression were classified into 5 types (I to V) that were carefully designed according to the different MEP parameters. The postoperative neurologic status of each patient was assessed immediately after surgery.ResultsThe mean intraoperative MEP changes range were 10.2% ± 5.8, 14.7% ± 9.2, 54.8% ± 31.9, 74.1% ± 24.3, and 110% ± 40 in Type I, II, III, IV, and V, respectively. There was a significant correlation of the intraoperative MEP change rate with different MEP baseline phenotypes (r = 0.84, P < 0.01). Postoperative transient new spinal deficits were found 0/31 case in Type I, 0/21 in Type II, 1/14 in Type III, 2/24 in Type IV, and 4/15 in Type V. No permanent neurological injury was found in our cases series.ConclusionsThe MEP baselines categories for predicting intraoperative cervical cord function change is proposed through this work. The more serious the MEP baseline abnormality, the higher the probability of intraoperative MEP changes, which is beneficial to early warning for the cervical cord injury.

Highlights

  • Surgery is usually the treatment of choice for patients with cervical compressive myelopathy (CCM)

  • The majority of studies are concerning the application of intraoperative transcranial motor evoked potential (MEP) to detect impending spinal cord damage, early warning the operating team to take action to avoid injury in cervical spine surgery [2,3,4,5,6,7]

  • There was a significant correlation of the intraoperative Motor evoked potential (MEP) change rate with different MEP baseline classification (r = 0.84, P < 0.01) (Fig. 4)

Read more

Summary

Introduction

Surgery is usually the treatment of choice for patients with cervical compressive myelopathy (CCM). The majority of studies are concerning the application of intraoperative transcranial motor evoked potential (MEP) to detect impending spinal cord damage, early warning the operating team to take action to avoid injury in cervical spine surgery [2,3,4,5,6,7] Imaging methods such as magnetic resonance imaging (MRI) are able to detect pathologic changes in patients with CCM, and are thought to be useful for the evaluation of prognosis [8,9,10,11,12]. These are preoperative prediction methods for postoperative spinal cord function change

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call