Abstract

The study of machining errors caused by tool deflection in the balkend milling process involves four issues, namely the chip geometry, the cutting force, the tool deflection and the deflection sensitivity of the surface geometry. In this paper, chip geometry and cutting force are investigated. The study on chip geometry includes the undeformed radial chip thickness, the chip engagement surface and the relationship between feed boundary and feed angle. For cutting force prediction, a rigid force model and a flexible force model are developed. Instantaneous cutting forces of a machining experiment for two 2D sculptured surfaces produced by the ball-end milling process are simulated using these force models and are verified by force measurements. This information is used in Part 2 of this paper, together with a tool deflection model and the deflection sensitivity of the surface geometry, to predict the machining errors of the machined sculptured surfaces.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.