Abstract
It is very well known that traditional artificial neural networks (ANNs) are prone to falling into local extremes when optimizing model parameters. Herein, to enhance the prediction performance of Cu(II) adsorption capacity, a particle swarm optimized artificial neural network (PSO-ANN) model was developed. Prior to predicting the Cu(II) adsorption capacity of modified pomelo peels (MPP), experimental data collected by our research group were used to build a consistent database. Then, a PSO-ANN model was established to enhance the model performance by optimizing the ANN's weights and biases. Finally, the performances of the developed ANN and PSO-ANN models were deeply evaluated. The results of this investigation revealed that the proposed hybrid method did increase both the generalization ability and the accuracy of the predicted data of the Cu(II) adsorption capacity of MPPs when compared to the conventional ANN model. This PSO-ANN model thus offers an alternative methodology for optimizing the adsorption capacity prediction of heavy metals using agricultural waste biosorbents.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.