Abstract
The main purpose of this paper is to introduce a new concept for the processes responsible for the escalation and propagation of steam explosions. The concept recognizes that initially only a small quantity of coolant around each coarsely premixed melt mass “sees” the fragmenting debris coming off it, hence it is called the concept of “microinteractions”. We also derive the analytical basis for it, define the nature of the requisite constitutive laws and related experimental data, and demonstrate that this concept is essential for the prediction of steam explosion energetics in large-scale premixtures in 2D geometries. We also provide the first numerical illustrations of this concept, implemented in the computer code esprose.m. Further, we provide the first numerical results of steam explosions in large water pools, i.e. ex-vessel explosions. These results reveal two important mechanisms for explosion “venting” and thus for reducing the dynamic loads on adjacent structures. We conclude that, taken together, the “microinteractions” and “venting” make realistic predictions of steam explosion loads feasible and within reach in the near future.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.