Abstract
The present study of MgOMg is a continuation of our theoretical work on Group 2 M(2)O hypermetallic oxides. Previous ab initio calculations have shown that MgOMg has a linear (1)Σ(g)+ ground electronic state and a very low lying first excited triplet electronic state that is also linear; the triplet state has (3)Σ(u)+ symmetry. No gas phase spectrum of this molecule has been assigned, and here we simulate the infrared absorption spectrum for both states. We calculate the three-dimensional potential energy surface, and the electric dipole moment surfaces, of each of the two states using a multireference configuration interaction (MRCISD) approach based on full-valence complete active space self-consistent field (FV-CASSCF) wavefunctions with a cc-pCVQZ basis set. A variational MORBID calculation using our potential energy and dipole moment surfaces is performed to determine rovibrational term values and to simulate the infrared absorption spectrum of the two states. We also calculate the dipole polarizability of both states at their equilibrium geometry in order to assist in the interpretation of future beam deflection experiments. Finally, in order to assist in the analysis of the electronic spectrum, we calculate the vertical excitation energies, and electric dipole transition matrix elements, for six excited singlet states and five excited triplet states using the state-average full valence CASSCF-MRCISD/aug-cc-pCVQZ procedure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.