Abstract
The DBL transforming gene was originally identified by transfection of NIH 3T3 cells with DNA from a human B-cell lymphoma. This gene was found to have arisen as a result of recombination of the 3' portion of the DBL protooncogene coding sequences with an unrelated segment of human DNA. It encodes a cytoplasmic protein that is equally distributed between cytosol and crude membrane fractions. To further characterize this transforming gene, a biologically active cDNA clone of the DBL transforming gene mRNA was isolated. Analysis of the sequence of the DBL oncogene cDNA revealed a long open reading frame that encodes a hybrid protein whose first 50 amino acids (at least) derive from a complete exon of a different locus. No significant homology with known oncogenes or any known protein sequences was demonstrated. The computer analysis of the predicted DBL protein indicated it is highly hydrophilic with no hydrophobic domains characteristic of a membrane-spanning region or signal peptide. Thus, the DBL oncoprotein is distinct among known transforming gene products.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.