Abstract

Given a finite nonnegative Borel measure $m$ in $\mathbb{R}^{d}$, we identify the Lebesgue set $\mathcal{L}(V_{s}) \subset \mathbb{R}^{d}$ of the vector-valued function $$V_{s}(x) = \int_{\mathbb{R}^{d}}\frac{x - y}{|x - y|^{s + 1}} \mathrm{d}m(y), $$ for any order $0 < s < d$. We prove that $a \in \mathcal{L}(V_{s})$ if and only if the integral above has a principal value at $a$ and $$\lim_{r \to 0}{\frac{m(B_{r}(a))}{r^{s}}} = 0.$$ In that case, the precise representative of $V_{s}$ at $a$ coincides with the principal value of the integral. We also study the existence of Lebesgue points for the Cauchy integral of the intrinsic probability measure associated with planar Cantor sets, which leads to challenging new questions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.