Abstract

Nutrients recovery from urine to close the nutrient loop is one of the most attractive benefits of source separation in wastewater management. The current study presents an investigation of the thermodynamic modeling of the recovery of P and K from synthetic urine via the precipitation of magnesium potassium phosphate hexahydrate (MPP). Experimental results show that maximum recovery efficiencies of P and K reached 99% and 33%, respectively, when the precipitation process was initiated only through adding dissolvable Mg compound source. pH level and molar ratio of Mg:P were key factors determining the nutrient recovery efficiencies. Precipitation equilibrium of MPP and magnesium sodium phosphate heptahydrate (MSP) was confirmed via precipitates analysis using a Scanning Electron Microscope/Energy Dispersive Spectrometer and an X-ray Diffractometer. Then, the standard solubility products of MPP and MSP in the synthetic urine were estimated to be 10−12.2 ± 0.0.253 and 10−11.6 ± 0.253, respectively. The thermodynamic model formulated on chemical software PHREEQC could well fit the experimental results via comparing the simulated and measured concentrations of K and P in equilibrium. Precipitation potentials of three struvite-type compounds were calculated through thermodynamic modeling. Magnesium ammonium phosphate hexahydrate (MAP) has a much higher tendency to precipitate than MPP and MSP in normal urine while MSP was the main inhibitor of MPP in ammonium-removed urine. To optimize the K recovery, ammonium should be removed prior as much as possible and an alternative alkaline compound should be explored for pH adjustment rather than NaOH.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.