Abstract

The precedence effect in the localization of a moving lagging sound source was studied in experiments on humans under the free field conditions in the presence of a stationary (lead) sound source. Broad-band noise (5–18 kHz) bursts 1 s in duration presented in the horizontal and vertical planes were used as signals. The lead-lag delays ranged from 1 to 40 ms. The results showed that, if the signals were presented in the horizontal plane, the probability of correct localization of the moving lagging signal was decreased for delays shorter than 25 ms; if the signals were presented in the vertical plane, it was decreased for delays shorter than 40 ms. If the delays were shorter than 8–10 ms, the subjects could not localize the moving lagging signal at all. In this interval of delays, the subjects could localize only the lead signal. The mean echo threshold for signals presented in the horizontal plane was smaller than for signals presented in the vertical plane (7.3 and 10.1 ms, respectively). However, comparison of these values across the sample of subject did not show significant differences [F(1, 5) = 5.52, p = 0.07]. The results of the study suggest that the precedence effect causes a tendency towards a stronger suppression of a moving lagging signal in the vertical plane than in the horizontal plane.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call