Abstract

Recent in vitro studies indicate that neurons in the pre-Botzinger (pre-Bot) complex of neonatal rats play an essential role in respiratory rhythm generation. In the adult rat, however, the location and physiology of pre-Bot neurons is less clearly understood. The present study aims to investigate the firing patterns of neurons that are located between Botzinger and rVRG area, and the precise location of this transition zone in relation to other medullary nuclei. Sprague-Dawley rats (weighted between 400–550 g) were anaesthetised with 72 mg/kg sodium pentobarbitone and 0.4 mg/kg atropine (i.p.), and paralysed with 1 mg/kg pancuronium dibromide (i.v.), followed by additional doses as required. Extracellular recordings were made from 302 respiratory units located between 0 and 1.6 mm caudal to the facial nucleus and ventral to the nucleus ambiguus. As expected, expiratory units were mostly recorded from the rostral medulla (80%, 125/157) and inspiratory units were concentrated in the more caudal area (80%, 36/45). However, we report here that, between the Botzinger expiratory and rVRG inspiratory units, there exists a transition zone containing a mixture of phase-spanning units (41%, 41/100) as well as inspiratory (37%) and expiratory units (22%). The phase-spanning units are active across the expiratory-inspiratory phase, or vice versa. The rostrocaudal extension of this transition zone is about 400 μm, with the caudal end at the level of the caudal pole of the ambigual compact formation. Our preliminary data suggest that this transition zone could be the locus of pre-Bot neurons in the adult rat.

Highlights

  • To be effective, inspiratory muscles on the left and right sides must contract together

  • We have found that a prominent gap in the column of ventral respiratory group (VRG) The nucleus tractus solitarii (NTS) relays information from primary related parvalbumin cells [2] likely corresponds to the pBc since visceral receptors to the central nervous system and is critically parvalbumin cells are rare in this zone and never co-localize with involved in the reflex control of autonomic functions

  • The specific protein(s) necessary for longterm facilitation (LTF) is unknown, we recently found that episodic hypoxia and LTF are associated with elevations in ventral spinal concentrations of brain derived neurotrophic factor (BDNF)

Read more

Summary

Introduction

Inspiratory muscles on the left and right sides must contract together. The left and right halves of the diaphragm are synchronised because a bilateral population of medullary premotor neurones [1] simultaneously excites left and right phrenic motoneurones. Transection studies demonstrate that each side of the brainstem is capable of generating respiratory rhythm independently [2], so that left and right medullary inspiratory neurones must themselves be synchronised. The interconnections and common excitation that accomplish such synchronisation are unknown in rats. The respiratory rhythm of hypoglossal (XII) nerve discharge in transverse medullary slice preparations from neonatal rats is thought to originate in the region of the ventral respiratory group (VRG); generated there by a combination of “pacemaker” neurones [1] and their interactions with other respiratory neurones. Our goal was to discover interconnections between left and right VRG neurones as well as their connections to XII motoneurones

Objectives
Methods
Results
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.