Abstract
The Ppz protein phosphatases have been recently shown to negatively regulate the major potassium transport system in the yeast Saccharomyces cerevisiae, encoded by the TRK1 and TRK2 genes. We have found that, in the absence of the Trk system, Ppz mutants require abnormally high concentrations of potassium to proliferate. This can be explained by the observation that trk1 trk2 ppz1 or trk1 trk2 ppz1 ppz2 strains display a very poor rubidium uptake, with markedly increased K m values. These cells are very sensitive to the presence of several toxic cations in the medium, such as hygromicyn B or spermine, but not to lithium or sodium cations. At limiting potassium concentrations, addition of EGTA to the medium improves growth of these mutants. Therefore, our results indicate that, in addition to their role in regulating Trk potassium transporters, Ppz phosphatases (essentially Ppz1), positively affect the residual low affinity potassium transport mechanisms in yeast. These findings may provide a new way to elucidate the molecular nature of the low affinity potassium uptake system in yeast as well as a useful model to analyze the function of plant or mammalian potassium channels through heterologous expression in yeast.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.