Abstract

We study the TST reaction rate for the systems with power-law distributions. We derive the expressions of the reaction rate coefficient with tunneling correction, which strongly depends on the power-law parameter. The numerical results show that a small deviation from one in the parameter can result in a significant change in the rate coefficient, but only cause a small change in the tunneling correction. Thus the tunneling correction is not sensitive to the power-law distributions. As an application example, we take the H+H2 reaction to calculate the power-law reaction rate coefficient with the tunneling correction, the results of which with the parameter slightly different from one are in good agreement with all the experimental studies in temperature range 2×102∼103 K.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.