Abstract

The ability of three-dimensional magnetic and reconnection solutions to provide flarelike energy release is discussed. It is pointed out, on the basis of exact analytic solutions, that fast dissipation is possible only if the hydromagnetic pressure in the reconnection region becomes unbounded in the limit of small plasma resistivities. The implication is that some saturation of the power output is inevitable for realistic coronal plasmas. Estimates of the saturated power, based on limiting the flux pileup in the field, suggest that the geometry of the spine reconnection mechanism precludes significant flare energy release. However, the current sheet structures involved in fan reconnection seem able to release sufficient magnetic energy fast enough to account for modest flares, even under the conservative assumption of classical plasma resistivities.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call