Abstract

The localized normal-score ensemble Kalman filter (NS-EnKF) coupled with covariance inflation is used to characterize the spatial variability of a channelized bimodal hydraulic conductivity field, for which the only existing prior information about conductivity is its univariate marginal distribution. We demonstrate that we can retrieve the main patterns of the reference field by assimilating a sufficient number of piezometric observations using the NS-EnKF. The possibility of characterizing the conductivity spatial variability using only piezometric head data shows the importance of accounting for these data in inverse modeling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.