Abstract

Considerable effort in constraint programming has focused on the development of efficient propagators for individual constraints. In this paper, we consider the combined power of such propagators when applied to collections of more than one constraint. In particular we identify classes of constraint problems where such propagators can decide the existence of a solution on their own, without the need for any additional search. Sporadic examples of such classes have previously been identified, including classes based on restricting the structure of the problem, restricting the constraint types, and some hybrid examples. However, there has previously been no unifying approach which characterises all of these classes: structural, language-based and hybrid. In this paper we develop such a unifying approach and embed all the known classes into a common framework. We then use this framework to identify a further class of problems that can be solved by propagation alone.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.