Abstract

The final arbiter of enzyme mechanism is the ability to establish and test a kinetic mechanism. Isotope effects play a major role in expanding the scope and insight derived from the Michaelis-Menten equation. The integration of isotope effects into the formalism of the Michaelis-Menten equation began in the 1970s and has continued until the present. This review discusses a family of eukaryotic copper proteins, including dopamine β-monooxygenase, tyramine β-monooxygenase and peptidylglycine α-amidating enzyme, which are responsible for the synthesis of neuroactive compounds, norepinephrine, octopamine and C-terminally carboxamidated peptides, respectively. The review highlights the results of studies showing how combining kinetic isotope effects with initial rate parameters permits the evaluation of: (a) the order of substrate binding to multisubstrate enzymes; (b) the magnitude of individual rate constants in complex, multistep reactions; (c) the identification of chemical intermediates; and (d) the role of nonclassical (tunnelling) behaviour in C-H activation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call