Abstract

In the population protocol model, many problems cannot be solved in a self-stabilizing way. However, global knowledge, such as the number of nodes in a network, sometimes allow us to design a self-stabilizing protocol for such problems. In this paper, we investigate the effect of global knowledge on the possibility of self-stabilizing population protocols in arbitrary graphs. Specifically, we clarify the solvability of the leader election problem, the ranking problem, the degree recognition problem, and the neighbor recognition problem by self-stabilizing population protocols with knowledge of the number of nodes and/or the number of edges in a network.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.