Abstract
In this paper, we investigate the power of extending first-order quantification over states to branching and linear time temporal logics. We show that an unrestricted extension significantly enriches the expressive power of μ-calculus, but also leads to a significant jump in model checking complexity. However, by restricting the scope of the extension, we are able to present a powerful extension of μ-calculus that is richer than μ-calculus, but is in the same complexity class as μ-calculus in terms of model checking complexity. In the case of linear time temporal logic, we find that first-order quantification over states is more computationally expensive. We show that even under the most restricted scope of quantification, the program complexity of model checking linear temporal logic (LTL) is NP-hard and coNP-hard. However, we also show that model checking LTL with this generic extension remains PSPACE-complete.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.