Abstract

Power-law distributions are a near universal feature of energetic particle spectra in the heliosphere. Anomalous Cosmic Rays (ACRs), super-Alfv\'enic ions in the solar wind and the hardest energetic electron spectra in flares all have energy fluxes with power-laws that depend on energy $E$ approximately as $E^{-1.5}$. We present a new model of particle acceleration in systems with a bath of merging magnetic islands that self-consistently describes the development of velocity-space anisotropy parallel and perpendicular to the local magnetic field and includes the self-consistent feedback of pressure anisotropy on the merging dynamics. By including pitch-angle scattering we obtain an equation for the omni-directional particle distribution $f(v,t)$ that is solved in closed form to reveal $v^{-5}$ (corresponding to an energy flux varying as $E^{-1.5}$) as a near-universal solution as long as the characteristic acceleration time is short compared with the characteristic loss time. In such a state the total energy in the energetic particles reaches parity with the remaining magnetic free energy. More generally, the resulting transport equation can serve as the basis for calculating the distribution of energetic particles resulting from reconnection in large-scale inhomogeneous systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.