Abstract

Infection due to strain of severe acute respiratory syndrome coronavirus 2 (SARS COV2) has grown to be of global public health significance. Biotechnology uses living organisms such as microbes to produce metabolites like biosurfactants. Biosurfactants are ampiphilic surface active biomolecules that were proven to have therapeutic function against some groups of microbes including viruses. They also have anti-inflammatory potential through their interaction with viral membranes and macromolecules to decrease cytosolic phospholipase A2, which is the beginning of an anti-inflammatory response, and are recognized structurally by toll-like receptors (TLR-2), which are released when neutrophils are stimulated. They can also play vital role in aiding the human body to have inflammatory response. The functional groups of biosurfactants interact with the viruses membrane structure. Some groups of biosurfactants cause physiochemical processes that render viruses inactive. Therefore it can generally be understood that biosurfactants destroy the virus's envelope and the viral membrane's structures. The principle behind biosurfactant’s anti viral property is due to the hydrophilic properties that are within the acetyl groups. Additionally, the hydrophobic properties of biosurfactant are also important in making it to have antiviral activity. These activities of biosurfactants against viruses make it to be potential anti-inflammatory and anti-viral agents against Covid-19. Therefore this paper is aimed to produce a mini review on the anti-inflammatory and anti-viral potential against Covid-19. And the review also highlights some of the desirable properties and benefits of biosurfactants as anti-corona viruses.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.