Abstract

BackgroundLate-onset sepsis (LOS) is a systemic inflammatory response syndrome in neonates, and the molecular mechanism of LOS is incompletely characterized. The purpose of this study was to explore the potential value of receptor interacting protein 3 (RIP3) in LOS.Methods63 neonates with LOS supported by positive culture and 79 neonates without sepsis were enrolled in this study from September 2019 to March 2021. Plasma RIP3 was detected by enzyme-linked immunosorbent assay (ELISA) and assessed along with the whole blood hypersensitive C-reactive protein (hs-CRP) level and platelet count (PLT). Differences in RIP3, hs-CRP and PLT between the two groups were compared. Changes in the three indicators in sepsis were also observed after treatment. The diagnostic value of indicators for LOS was evaluated by receiver operating characteristic (ROC) curve analysis.ResultsIn the sepsis group, RIP3 and hs-CRP levels were significantly higher than those in the control group (RIP3, p < 0.0001; hs-CRP, p < 0.0001), and PLT was significantly lower than that in the control group (p < 0.0001). After treatment, RIP3 and hs-CRP levels among septic survivors were significantly decreased (p < 0.0001) and PLT significantly improved (p = 0.0216). With RIP3 > 15,845.19 pg/mL, hs-CRP > 5.00 mg/L, and PLT < 204.00 × 109/L as the positive criteria, the sensitivity values of the three indicators in the diagnosis of LOS were 69.8%, 60.3%, 60.3%, respectively, and the specificity values were 92.4%, 96.2%, 79.8%, respectively. The combination of RIP3, hs-CRP and PLT had a sensitivity of 77.8% and specificity of 97.5%.ConclusionsRIP3 may contribute to the early diagnosis of LOS and monitoring of treatment effect. The combined detection of RIP3, hs-CRP and PLT may be more effective than individual detection in the diagnosis of LOS.

Highlights

  • Late-onset sepsis (LOS) is a systemic inflammatory response syndrome in neonates, and the molecular mechanism of LOS is incompletely characterized

  • 63 neonates with sepsis supported by positive culture were included in the sepsis group, with a median gestational age of 32.1 (30.1–36.6) weeks. 79 neonates without sepsis were included in the control group, with a median gestational age of 33.3 (30.4–35.3) weeks

  • Further comparative analysis showed that receptor interacting protein 3 (RIP3) and hsCRP levels in the sepsis group were significantly higher than those in the control group (p < 0.0001, Fig. 1a and p < 0.0001, Fig. 1b), and that the levels of platelet count (PLT) were significantly lower in the sepsis group than those in the control group (p < 0.0001, Fig. 1c)

Read more

Summary

Introduction

Late-onset sepsis (LOS) is a systemic inflammatory response syndrome in neonates, and the molecular mechanism of LOS is incompletely characterized. Late-onset sepsis (LOS), defined as neonatal sepsis occurring after 72 h of age, is a major cause of morbidity and mortality in neonatal populations [1,2,3]. The early diagnosis of LOS is challenging because its clinical features are highly variable and may be confused with non-infectious disorders [4, 5]. Gao et al BMC Infect Dis (2021) 21:919 have behavioral and neurocognitive dysfunction, mood disorders, and a low quality of life, which place a large burden on the medical system and society [2, 9]. Prompt diagnosis of LOS is crucial for improving outcomes and prognoses. The early diagnosis of LOS remains a serious global problem despite major efforts

Objectives
Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.