Abstract
The presence of high level of heavy metals in aquatic environment is a cause of ecological and environmental concern and thus their removal from water courses is environmentally essential. Four natural inexpensive biosorbents: macro algae (Fucus vesiculosus), crab shells (Cancer pagurus), wood chippings and iron-rich soil were tested for copper (Cu2+) and zinc (Zn2+) removal from aqueous solutions. Batch equilibrations were performed at 1:100 w/v with different initial metal concentrations. Three macro algae pre-treatments (unmodified (UM algae), chemically treated (Ca-T algae) and thermally treated (T-T algae)) were additionally investigated for performance. The sorption capacities were compared with the commercial material biochar and activated carbon. The maximum level of the sorbents for Cu2+ uptake at 15.7 mM/l was attained by the natural material of UM algae (72.37 ± 0.37 mg/g) > Ca-T algae (66.77 ± 0.19 mg/g) > T-T algae (63.06 ± 0.82 mg/g), followed by the commercial material activated carbon (36.71 ± 2.20 mg/g). The maximum level of the sorbents for Zn2+ uptake at 15.3 mM/l was also achieved by the natural material of UM algae (52.40 ± 0.80 mg/g) > Ca-T algae (48.83 ± 2.01 mg/g) > T-T algae (39.57 ± 0.80 mg/g) followed by the commercial material activated carbon (20.78 ± 1.63 mg/g) and biochar (18.07 ± 1.09 mg/g). The results demonstrated that Cu2+ and Zn2+ were effectively removed by these biosorbents at all concentrations. However, at high metals concentrations, the natural material macro algae had greater Cu2+ and Zn2+ sorption capacity than the conventional sorbent activated carbon, and the affinity of these natural biosorbents were greater for Cu2+ than Zn2+. Hence, inexpensive natural and readily available materials showed potential as biosorbents to remediate polluted stream water of toxic metal contaminants.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.