Abstract

Tree radial growth is characterized by not only the annual ring-width increment but also shifts in the tree-ring geometric center (TRGC) if subjected to asymmetric external forcing, such as gravity downslope or prevailing winds. Previous dendrochronological studies have used the asymmetric growth derived from tree-ring widths to reconstruct wind speed changes. Here we propose a novel method that uses quantitative TRGC measurements to estimate wind speed. We investigated TRGC shifts in northeast China, where the prevailing westerly winds are strong and persistent. We found that the TRGC showed significant correlations (r ​= ​0.64, p ​< ​0.01) with wind speed in May–September. The higher tree geometry sensitivity to wind speed obtained with the new method compared to previous ones, suggests the possibility of reconstructing historical wind change and variability in prevailing winds using TRGC. In addition, by correcting tree-ring radius according to their TRGC shifts, the basal area increment (BAI) was calculated. Our new BAI estimation provided stronger correlations with climate than both the standard tree-ring width chronology and a traditional BAI estimation. We suggest that future dendrochronological studies should consider TRGC shifts to increase the accuracy in climate reconstructions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.