Abstract
Cardiovascular disease (CVD) remains a leading cause of mortality and morbidity worldwide. Numerous therapies are currently under investigation to improve pathological cardiovascular complications, but yet, there have been very few new medications approved for intervention/treatment. Therefore, new approaches to treat CVD are urgently required. Attempts to prevent vascular complications usually involve amelioration of contributing risk factors and underlying processes such as inflammation, obesity, hyperglycaemia, or hypercholesterolemia. Historically, the development of peptides as therapeutic agents has been avoided by the Pharmaceutical industry due to their low stability, size, rate of degradation, and poor delivery. However, more recently, resurgence has taken place in developing peptides and their mimetics for therapeutic intervention. As a result, increased attention has been placed upon using peptides that mimic the function of mediators involved in pathologic processes during vascular damage. This review will provide an overview on novel targets and experimental therapeutic approaches based on peptidomimetics for modulation in CVD. We aim to specifically examine apolipoprotein A-I (apoA-I) and apoE mimetic peptides and their role in cholesterol transport during atherosclerosis, suppressors of cytokine signaling (SOCS)1-derived peptides and annexin-A1 as potent inhibitors of inflammation, incretin mimetics and their function in glucose-insulin tolerance, among others. With improvements in technology and synthesis platforms the future looks promising for the development of novel peptides and mimetics for therapeutic use. However, within the area of CVD much more work is required to identify and improve our understanding of peptide structure, interaction, and function in order to select the best targets to take forward for treatment.
Highlights
Cardiovascular disease remains a leading cause of mortality and morbidity worldwide
Researchers and clinicians have spent significant time and effort investigating the role of these risk factors in the development and progression of Cardiovascular disease (CVD), yet there have been a limited number of new medications approved for CVD-related intervention and/or treatment
Therapeutic peptides are described as naturally occurring short amino acid monomer chains, shorter than 100 amino acids, and they act by binding to specific cell surface receptors, where they trigger intracellular pathways
Summary
Cardiovascular disease remains a leading cause of mortality and morbidity worldwide. In developed countries, risk factors such as hypertension, hyperglycemia, and hypercholesterolemia are accepted as having a key role in driving CVD (Leening et al, 2016). In light of advances in processing technologies, there has been a renewed interest in peptides and peptidomimetics as potential therapeutic agents This is partly due to numerous improvements made to stability, transport, affinity profiles, and oral availability (Goodwin et al, 2012; Fosgerau and Hoffmann, 2015). There are more than 60 peptidebased drug products that have reached approval and nearly 140 in clinical trials (Lax and Meenan, 2012; Uhlig et al, 2014) To address these key technical hurdles to use peptides as medicines, a number of modifications strategies (thanks to robust peptide-chemistry approaches developed in recent years) have been widely adopted. Several bioactive peptides have proven to be highly functional with many serving as potent agonists and antagonists against numerous receptors implicated in disease
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.