Abstract

BackgroundIt is presently well accepted that the breast exhibits a circadian rhythm reflective of its physiology. There is increasing evidence that rhythms associated with malignant cells proliferation are largely non-circadian. Cancer development appears to generate its own thermal signatures and the complexity of these signatures may be a reflection of its degree of development. The limitations of mammography as a screening modality especially in young women with dense breasts necessitated the development of novel and more effective screening strategies with a high sensitivity and specificity. The aim of this prospective study was to evaluate the feasibility of dynamic thermal analysis (DTA) as a potential breast cancer screening tool.Methods173 women undergoing mammography as part of clinical assessment of their breast symptoms were recruited prior to having a biopsy. Thermal data from the breast surface were collected every five minutes for a period of 48 hours using eight thermal sensors placed on each breast surface [First Warning System (FWS), Lifeline Biotechnologies, Florida, USA]. Thermal data were recorded by microprocessors during the test period and analysed using specially developed statistical software. Temperature points from each contra-lateral sensor are plotted against each other to form a thermal motion picture of a lesion's physiological activity. DTA interpretations [positive (abnormal thermal signature) and negative (normal thermal signature)] were compared with mammography and final histology findings.Results118 (68%) of participating patients, were found to have breast cancer on final histology. Mammography was diagnostic of malignancy (M5) in 55 (47%), indeterminate (M3, M4) in 54 (46%) and normal/benign (M1, M2) in 9 (8%) patients. DTA data was available on 160 (92.5%) participants. Using our initial algorithm, DTA was interpreted as positive in 113 patients and negative in 47 patients. Abnormal thermal signatures were found in 76 (72%) out of 105 breast cancer patients and 37 of the 55 benign cases. Then we developed a new algorithm using multiple-layer perception and SoftMax output artificial neural networks (ANN) on a subgroup (n = 38) of recorded files. The sensitivity improved to 76% (16/21) and false positives decreased to 26% (7/27)ConclusionDTA of the breast is a feasible, non invasive approach that seems to be sensitive for the detection of breast cancer. However, the test has a limited specificity that can be improved further using ANN. Prospective multi-centre trials are required to validate this promising modality as an adjunct to screening mammography especially in young women with dense breasts.

Highlights

  • Breast cancer continues to be the most common malignancy in women

  • Early detection of breast cancer is considered an important prognostic factor, and Reidy has aptly suggested that death from malignancy rather than its detection should be the point of reference in evaluating any screening programme [5]

  • Based on the understanding of the above pathological observations and the recent technological advances that have facilitated the recording of circadian rhythm variations of the breast[14] we prospectively aimed to examine the feasibility of a new potential screening method called the dynamic thermal analysis (DTA) for breast cancer detection

Read more

Summary

Introduction

Breast cancer continues to be the most common malignancy in women. Epidemiological studies estimate that one in eight women will develop breast cancer during their lifetimes [1,2,3,4]. One in five women with breast cancer will die of the disease despite the considerable advances in treatment Given these circumstances, early detection of breast cancer is considered an important prognostic factor, and Reidy has aptly suggested that death from malignancy rather than its detection should be the point of reference in evaluating any screening programme [5]. The limitations of mammography as a screening modality especially in young women with dense breasts necessitated the development of novel and more effective screening strategies with a high sensitivity and specificity. The aim of this prospective study was to evaluate the feasibility of dynamic thermal analysis (DTA) as a potential breast cancer screening tool

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call