Abstract

Sustainable farming systems strive to minimise the use of synthetic pesticides and to optimise the use of alternative management strategies to control soil-borne pathogens. Arbuscular mycorrhizal (AM) fungi are ubiquitous in nature and constitute an integral component of terrestrial ecosystems, forming symbiotic associations with plant root systems of over 80% of all terrestrial plant species, including many agronomically important species. AM fungi are particularly important in organic and/or sustainable farming systems that rely on biological processes rather than agrochemicals to control plant diseases. Of particular importance is the bioprotection conferred to plants against many soil-borne pathogens such as species of Aphanomyces, Cylindrocladium, Fusarium, Macrophomina, Phytophthora, Pythium, Rhizoctonia, Sclerotinium, Verticillium and Thielaviopsis and various nematodes by AM fungal colonisation of the plant root. However, the exact mechanisms by which AM fungal colonisation confers the protective effect are not completely understood, but a greater understanding of these beneficial interactions is necessary for the exploitation of AM fungi within organic and/or sustainable farming systems. In this review, we aim to discuss the potential mechanisms by which AM fungi may contribute to bioprotection against plant soil-borne pathogens. Bioprotection within AM fungal-colonised plants is the outcome of complex interactions between plants, pathogens and AM fungi. The use of molecular tools in the study of these multifaceted interactions may aid the optimisation of the bioprotective responses and their utility within sustainable farming systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call