Abstract
Singlet fission, an exciton multiplication process in organic semiconductors that converts one singlet exciton into two triplet excitons, is a promising way to reduce thermalization losses in conventional solar cells. One way to harvest triplet excitons is to transfer their energy into quantum dots, which then emit photons into an underlying solar cell. We simulate the performance potential of such a singlet fission photon multiplier combined with a silicon base cell and compare it to a silicon-based tandem solar cell. We calculate the influence of various loss mechanisms on the performance potential under real-world operation conditions using a variety of silicon base cells with different efficiencies. We find that the photon multiplier is more stable against changes in the solar spectrum than two-terminal tandem solar cells. We furthermore find that, as the efficiency of the silicon base cell increases, the efficiency of the photon multiplier increases at a rate higher than that of the tandem solar cell. For current record silicon solar cells, the photon multiplier has the potential to increase the efficiency by up to 4.2% absolute.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.