Abstract

The negative impact from industrial pollution of the environment is still a global occurrence, and as a consequence legislation and subsequent regulation is becoming increasingly stringent in response, in particular, to minimising potential impact on human health. These changes have generated growing pressures for the steel industry to innovate to meet new regulations driving a change to the approach to waste management across the industrial landscape, with increasing focus on the principles of a circular economy. With a knowledge of the compositional profiles of process by-products, we have assessed chemical cleaning to improve environmental performance and minimise disruption to manufacturing processes, demonstrating re-use and recycling capacity. We show that with a knowledge of phase composition, we are able to apply stabilisation methods that can either utilise waste streams directly or allow manipulation, making them suitable for re-use and/or inert disposal. We studied blast furnace slags and Portland cement mixes (50%/50% and 30%/70%) with a variety of other plant wastes (electrostatic precipitator dusts (ESP), blast furnace (BF) sludge and basic oxygen furnace (BOF) sludge) which resulted in up to 90% immobilisation of hazardous constituents. The addition of organic additives i.e., citric acid can liberate or immobilise problematic constituents; in the case of K, both outcomes occurred depending on the waste type; ESP dust BF sludge and BOF fine sludge. Pb and Zn however were liberated with a 50–80% and 50–60% residue reduction respectively, which generates possibilities for alternative uses of materials to reduce environmental and human health impact.

Highlights

  • In 2017 approximately 1.69 billion tonnes of crude steel was produced worldwide [1] with as much as 400 kg of solid waste being generated per tonne of steel and requiring disposal [2]

  • All sample types are presented as median values and comparisons are made of the treated leachate to concentrations from Waste acceptance criteria (WAC) leachates

  • A noticeable increase in their release (Table was observed (C-Element refers to citrate-leached results) (Samples ESP dust: 1–5, blast furnace (BF) sludge: 6–7, BOF sludge: 8). after sample exposure to citrate solution compared to water

Read more

Summary

Introduction

In 2017 approximately 1.69 billion tonnes of crude steel was produced worldwide [1] with as much as 400 kg of solid waste being generated per tonne of steel and requiring disposal [2]. In the last three decades a number of methods for the recovery and reuse of waste by-products (powdered wastes, flue dusts, slag, and sludge) have been developed for application within the steel manufacture. Res. Public Health 2019, 16, 2093; doi:10.3390/ijerph16122093 www.mdpi.com/journal/ijerph

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call