Abstract

Prorocentrum donghaiense, a marine dinoflagellate, causes harmful algal blooms (HABs) characterised by the highest outbreak frequency and most extensive coverage among similar species in the East China Sea. Highly efficient and ecofriendly biocontrol strategies should be developed for HAB control. Prodigiosin is an efficient biological algicide that demonstrated strong algicidal activity towards P. donghaiense. However, the mechanism of its toxicity to P. donghaiense is unknown. These factors were investigated to evaluate potential use of prodigiosin for control of P. donghaiense blooms. Photosynthetic electron transport rate, maximum quantum yield and respiration rate of P. donghaiense decreased significantly upon exposure to prodigiosin, indicating that prodigiosin rapidly exerted adverse effects on the chloroplasts and mitochondria. Furthermore, a significant increase in dichlorofluorescein fluorescence intensity indicated an overproduction of reactive oxygen species (ROS). The antioxidant system of P. donghaiense scavenged ROS; however, an increase in malondialdehyde concentrations indicated that excessive ROS were still able to initiate lipid peroxidation. Thus, ROS production resulted in the formation of lipids with a reduced degree of unsaturation. Lipid peroxidation decreased lipid fluidity and rigidified the membrane system, causing serious functional destruction of the membrane. Flow cytometry analysis indicated that prodigiosin arrested the cell cycle of P. donghaiense. However, surviving algal cells were able to repair the damaged functions and resume the cell cycle after prodigiosin was removed by photodegradation. Otherwise, P. donghaiense cells lost their membrane integrity and died. To begin an evaluation of ecological safety of prodigiosin, we tested four marine organisms at various trophic levels. The results of these tests indicated that Chlorella vulgaris, Photobacterium phosphoreum, Artemia salina and Lateolabrax japonicus were less sensitive to prodigiosin than P. donghaiense. Toxicity to all five organisms declined after prodigiosin was exposed to sunlight for 6 h. Considering the toxic doses of prodigiosin to various organisms and its photodegradation characteristics, we suggest that prodigiosin has potential in controlling P. donghaiense blooms but should be applied at night, in small doses, with multiple applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call