Abstract

The role of lipid droplets (LDs) and lipid droplet-associated genes (LD-AGs) remains unclear in head and neck squamous cell carcinoma (HNSCC). This study aimed to investigate LDs in HNSCC and identify LD-AGs essential for the diagnosis and prognosis of HNSCC patients. The LDs in the HNSCC and normal cell lines were stained with oil red O. Bioinformatic analysis was used to find LD-AGs in HNSCC that had diagnostic and prognostic significance. LDs accumulation was increased in HNSCC cell lines compared with normal cell lines (P<0.05). Fifty-three differentially expressed genes, including 34 upregulated and 19 downregulated, were found in HNSCC based on the TCGA platform (P<0.05). Then, 53 genes were proved to be functionally enriched in lipid metabolism and LDs. Among them, with an AUC value > 0.7, 34 genes demonstrated a high predictive power. Six genes (AUP1, CAV1, CAV2, CAVIN1, HILPDA, and SQLE) out of 34 diagnostic genes were linked to overall survival in patients with HNSCC (P<0.05). The significant prognostic factors AUP1, CAV1, CAV2, and SQLE were further identified using the univariate and multivariate cox proportional hazard models (P<0.05). The protein expression of CAV2 and SQLE was significantly increased in the HNSCC tissue compared to normal tissues (P<0.05). Finally, the knockdown of the four LD-AGs decreased LDs accumulation, respectively. Increased LDs accumulation was a hallmark of HNSCC, and AUP1, CAV1, CAV2, and SQLE were discovered as differentially expressed LD-AGs with diagnostic and prognostic potential in HNSCC.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call