Abstract

While electrodialysis (ED) demonstrates lower energy consumption than reverse osmosis (RO) in the desalination of low salinity waters, RO continues to be the predominant technology for brackish water desalination. In this study, we probe this skewed market share and project the potential for future disruption by ED through systematic assessment of the levelized cost of water (LCOW). Using rigorous process- and economic-models, we minimize the LCOW of RO and ED systems, highlighting important tradeoffs between capital and operating expenditure for each technology. With optimized current state-of-the-art systems, we find that ED is more economical than RO for feed salinities ≤ 3 g L−1, albeit to a minor extent. Considering that RO is a highly mature technology, we focus on predicting the future potential of ED by evaluating plausible avenues for capital and operating cost reduction. Specifically, we find that reduction in the price of ion-exchange membranes (i.e., < 60 USD m−2) can ensure competitiveness with RO for feed salinities up to 5 g L−1. For higher feed salinities (≥ 5 g L−1) we reveal that the LCOW of ED may effectively be reduced by decreasing ion-exchange membrane resistance, while preserving high current efficiency. Through extensive assessment of structure-property-performance relationships, we precisely identify target membrane charge densities and diffusion coefficients which optimize the LCOW of ED, thus providing novel guidance for future membrane material development. Overall, we emphasize that with a unified approach — whereby ion-exchange membrane price is reduced and performance is enhanced — ED can become the economically preferable technology compared to RO across the entire brackish water salinity range.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.