Abstract

World is experiencing rapid commercial growth and urbanization. Carbon (IV) oxide (CO2) emissions into the atmosphere is increasing. As a result, a more effective energy policy is required. As a matter of fact, sustainable environmental quality has been identified as a critical component of long-term economic development success. Many studies have found that lower CO2 emissions are an indicator of improved environmental quality. In the future, low-cost photoelectric technologies with superior sun-to-energy power conversion efficiency, extended lifetime, and low toxicity may replace conventional silicon-based solar panels and provide effective global illumination. Dye-sensitized solar cells (DSSCs) based on the zinc oxide nanorods are capable of all the aforementioned features. Zinc-oxide (ZnO) nanostructures are important for dye synthesis solar cells, and it is a leading semiconductor that researchers are interested in. The primary objective/purpose of this resarch is to highlight impact of carbon (IV) oxide and the potential of DSSC for reducing CO2 discharges into the atmosphere. Method of ZnO NRs deposition on seed layer coated FTO Glass by Hydrothermal method was also expounded. The morphology of nanorods is presented, based on the available literature it concludes that the production of efficient DSSCs can reduce reliance on fossil fuels, which are the agent of ozone depletion layer due to green gas emissions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.