Abstract

The novelty and suitability of the mitochondrial gene CO1 in DNA barcoding as a reliable identification tool in animal species are undisputed. This is attributed to its standardized sequencing segment of the mitochondrial cytochrome c oxidase-1 gene (CO1) which has the necessary universality and variability making it a generally acceptable barcode region. CO1 is a haploid single locus that is uniparentally-inherited. Protein-coding regions are present in high-copy numbers making it an ideal barcode. The mitochondrial oxidase subunit I (COI) gene is a robust barcode with a suitable threshold for delineating animals and is not subject to drastic length variation, frequent mononucleotide repeats or microinversions. However, a low nucleotide substitution rate of plant mitochondrial genome [mtDNA] precludes the use of CO1 as a universal plant DNA barcode and makes the search for alternative barcode regions necessary. Currently, there exists no universal barcode for plants. The plastid region reveals leading candidate loci as appropriate DNA barcodes yet to be explored in biodiversity studies in Kenya. Four of these plastid regions are portions of coding genes (matK, rbcL, rpoB, and rpoC1), and three noncoding spacers (atpF-atpH, trnH-psbA, and psbK-psbL) which emerge as ideal candidate DNA loci. While different research groups propose various combinations of these loci, there exists no consensus; the lack thereof impedes progress in getting a suitable universal DNA barcode. Little research has attempted to investigate and document the applicability and extend of effectiveness of different DNA regions as barcodes to delineate cowpea at subspecies level. In this study we sought to test feasibility of the seven putative candidate DNA loci singly and in combination in order to establish a suitable single and multi-locus barcode regions that can have universal application in delineating diverse phylogeographic groups of closely related Kenyan cowpea variants. In this study, our focus was based on genetic parameters including analyses of intra- and infra-specific genetic divergence based on intra- and infra-specific K2P distances; calculation of Wilcoxon signed rank tests of intra-specific divergence among loci and coalescence analyses to delineate independent genetic clusters. Knowledge of DNA candidate loci that are informative will reveal the suitability of DNA barcoding as a tool in biodiversity studies. Results of this study indicate that: matK, trnH-psbA, psbK-psbL, and rbcL are good barcodes for delineating intra and infraspecific distances at single loci level. However, among the combinations, matK + trnH-psbA, rpoB + atpF-atpH + matK are the best barcodes in delineating cowpea subvariants. rbcL gene can be a suitable barcode marker at single locus level, but overall, multi locus approach appears more informative than single locus approach. The present study hopes to immensely contribute to the scanty body of knowledge on the novelty of DNA barcoding in cataloguing closely related cowpea variants at molecular level and hopes to open up future research on genomics and the possibility of use of conserved regions within DNA in inferring phylogenetic relationships among Kenyan cowpea variants.

Highlights

  • DNA-barcoding is a technique used for the taxonomic characterization and phylogenetic analysis of organisms and entails the use of defined regions within the DNA genetic material of an organism, which though exposed to evolution mechanism, is conserved between and within the species

  • Among the combinations, matK + trnH-psbA, rpoB + atpF-atpH + matK are the best barcodes in delineating cowpea subvariants. rbcL gene can be a suitable barcode marker at single locus level, but overall, multi locus approach appears more informative than single locus approach

  • Infra- and Intra-Specific Diversities Performances of each of the seven candidate DNA barcode loci was assessed by means of intra- and infra-specific diversity calculated from Kimura 2 Parameter (K2P) (Kimura’s two parameters) pairwise distance matrices [12]

Read more

Summary

Introduction

DNA-barcoding is a technique used for the taxonomic characterization and phylogenetic analysis of organisms and entails the use of defined regions within the DNA genetic material of an organism, which though exposed to evolution mechanism, is conserved between and within the species. This region serves as a tool to uniquely identify two individuals with unique ancestral-lineage. DNA barcoding is a sequence-based identification system that may be constructed of one or several loci taken together as a complementary unit in delineating relationships and inferring patterns of change among related organisms It employs short highly variable regions of the genome to delineate organism that are closely related. Plastid DNA candidate loci are universally present and conserved in the plant target lineages and can provide a rapid and reproducible

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call