Abstract

In future smart grids, smart metering, active distribution network management, electric-mobility and a high penetration of distributed generation are anticipated. At times of high PV production and low electricity demand, network voltage rise may exceed limits resulting in a consequent curtailment of PV generation reducing the energy yield. A decrease in energy yield reduces the PV system economic viability which may result in the rate of PV adoption being less than anticipated depending upon how curtailment is handled. The potential of smart grids, especially by means of Demand Side Management (DSM), to facilitate PV penetration by capturing maximum PV energy is investigated in this paper. The impact of varying PV penetrations on the node voltages of a generic UK urban distribution network is analyzed by means of simplified distribution load flow to identify voltage limit violations and PV generation hosting capacity of the network. Then the feasibility of maximizing PV energy capture by time shifting flexible consumer loads is investigated. It is seen that the entire PV over-production in the LV feeder can be captured by the use of flexible wet loads and electric water heating alone, for up to 90 % PV penetration in the MV network, beyond which additional measures were found necessary.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.