Abstract

We report on combining the surface analysis technique of Laser-induced Breakdown Spectroscopy (LIBS) with Raman spectroscopy. The combination of both techniques enables to study the chemical composition of the sample in a broader context when combining elemental and molecular information. Obtained elemental and molecular spectra are characteristic for individual biological samples (e.g., organs and cells) and are considered as a fingerprint. In this study, Raman spectroscopy is used for the detection of important molecular complexes in selected wood samples, e.g., accurate lignin and cellulose content on distinct spots of the sample surface. We chose Raman as a standard reference technique that is used for the lignin/cellulose ratio estimation. To complement the molecular information, LIBS technique was employed for the imaging of essential nutrients, e.g., Ca, Na, and K. Consequently, the contribution from both analytical techniques was combined and changes in the molecular content were visually correlated to the abundance of nutrition elements and show a direct dependence between the two signal responses. Thus, we can get specific answers to relation of lignin and cellulose formation with nutrients within the plant tissue. This evidence may then be helpful for the study of the effect of various environmental and stress factors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call